The poset structures admitting the extended binary Golay code to be a perfect code

نویسندگان

  • Changrim Jang
  • Hyun Kwang Kim
  • Dong Yeol Oh
  • Yoomi Rho
چکیده

Brualdi et al. [Codes with a poset metric, Discrete Math. 147 (1995) 57–72] introduced the concept of poset codes, and gave an example of poset structure which admits the extended binary Golay code to be a 4-error-correcting perfect P-code. In this paper we classify all of the poset structures which admit the extended binary Golay code to be a 4-error-correcting perfect P-code, and show that there are no posets which admit the extended binary Golay code to be a 5-error-correcting perfect P-code. © 2007 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The poset structures admitting the extended binary Hamming code to be a perfect code

Brualdi et al. introduced the concept of poset codes, and gave an example of poset structure which admits the extended binary Hamming code to be a double-error-correcting perfect P-code. Our study is motivated by this example. In this paper we classify all poset structures which admit the extended binary Hamming code to be a double or triple-error-correcting perfect P-code. © 2004 Elsevier B.V....

متن کامل

On non-antipodal binary completely regular codes

Binary non-antipodal completely regular codes are characterized. Using the result on nonexistence of nontrivial binary perfect codes, it is concluded that there are no unknown nontrivial non-antipodal completely regular binary codes with minimum distance d ≥ 3. The only such codes are halves and punctered halves of known binary perfect codes. Thus, new such codes with covering radiuses ρ = 2, 3...

متن کامل

Z4-Linear Perfect Codes

For every n = 2 k ≥ 16 there exist exactly ⌊(k + 1)/2⌋ mutually nonequiv-alent Z 4-linear extended perfect codes with distance 4. All these codes have different ranks. Codes represented in such a manner are called Z 4-linear. In [5] it is shown that the extended Golay code and the extended Hamming (n, 2 n−log 2 n−1 , 4)-codes (of length n and cardinality 2 n−log 2 n−1 , with distance 4) for eve...

متن کامل

The Golay Code Outperforms the Extended Golay Code Under Hard-Decision Decoding

We show that the binary Golay code is slightly more power efficient than the extended binary Golay code under maximum-likelihood (ML), hard-decision decoding. In fact, if a codeword from the extended code is transmitted, one cannot achieve a higher probability of correct decoding than by simply ignoring the 24th symbol and using an ML decoder for the non-extended code on the first 23 symbols. T...

متن کامل

A New Construction for the Extended Binary Golay Code

We give a new construction of the extended binary Golay code. The construction is carried out by taking the Gray image of a self-dual linear code over the ring R = F2+uF2+vF2+uvF2 of length 6 and size 212. Writing a typical generating matrix of the form [I3|A], with A being a 3× 3 matrix over R, and finding some dependencies among the entries of A, we are able to set a general form for the gene...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Discrete Mathematics

دوره 308  شماره 

صفحات  -

تاریخ انتشار 2008